问题详情
问题已解决
所属话题:
#CPA#
老师,内插法可以讲下吗?注会的
84784982 | 提问时间:03/04 10:37
宋生老师
金牌答疑老师
职称:注册税务师/中级会计师
 内插法,一般是指数学上的直线内插,利用等比关系,是用一组已知的未知函数的自变量的值和与它对应的函数值来求一种求未知函数其它值的近似计算方法,是一种未知函数,数值内插法逼近求法,天文学上和农历计算中经常用的是白塞尔内插法,可参考《中国天文年历》的附录。另外还有其他非线性内插法:如二次抛物线法和三次抛物线法。因为是用别的线代替原线,所以存在误差。可以根据计算结果比较误差值,如果误差在可以接受的范围内,才可以用相应的曲线代替。一般查表法用直线内插法计算。   二、原理   数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。   数学内插法说明点P反映的变量遵循直线AB反映的线性关系。   上述公式易得。A、B、P三点共线,则   (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。   三、具体应用:在内含报酬率中的计算   内插法在内含报酬率的计算中应用较多。内含报酬率是使投资项目的净现值等于零时的折现率,通过内含报酬率的计算,可以判断该项目是否可行,如果计算出来的内含报酬率高于必要报酬率,内插法则方案可行;如果计算出来的内含报酬率小于必要报酬率,则方案不可行。一般情况下,内含报酬率的计算都会涉及到内插法的计算。不过一般要分成这样两种情况:   1.如果某一个投资项目是在投资起点一次投入,经营期内各年现金流量相等,而且是后付年金的情况下,可以先按照年金法确定出内含报酬率的估计值范围,再利用内插法确定内含报酬率;   2.如果上述条件不能同时满足,就不能按照上述方法直接求出,而是要通过多次试误求出内含报酬率的估值范围,再采用内插法确定内含报酬率。   下面举个简单的例子进行说明:   某公司现有一投资方案,资料如下:   初始投资一次投入4000万元,经营期三年,最低报酬率为10%,经营期现金净流量有如下两种情况:(1)每年的现金净流量一致,都是1600万元;(2)每年的现金净流量不一致,第一年为1200万元,第二年为1600万元,第三年为2400万元。   问在这两种情况下,各自的内含报酬率并判断两方案是否可行。   详细解析:   根据(1)的情况,知道投资额在初始点一次投入,且每年的现金流量相等,都等于1600万元,所以应该直接按照年金法计算,则   NPV=1600×(P/A,I,3)-4000   由于内含报酬率是使投资项目净现值等于零时的折现率,   所以 令NPV=0   则:1600×(P/A,I,3)-4000=0   (P/A,I,3)=4000÷1600=2.5   查年金现值系数表,确定2.5介于2.5313(对应的折现率i为9%)和2.4869(对应的折现率I为10%),可见内含报酬率介于9%和10%之间,根据上述插值法的原理,可设内含报酬率为I,   则根据原公式:   (i2-i1)/(i-i1)=( β2-β1)/( β-β1).   i2 =10%,i1=9%,则这里β表示系数,β2=2.4689,β1=2.5313,   而根据上面的计算得到β等于2.5,所以可以列出如下式子:   (10%-9%)/(I-9%)=(2.4689-2.5313)/(2.5-2.5313),解出I等于9.5%,因为企业的最低报酬率为10%,内含报酬率小于10%,所以该方案不可行。   根据(2)的情况,不能直接用年金法计算,而是要通过试误来计算。 这种方法首先应设定一个折现率i1,再按该折现率将项目计算期的现金流量折为现值,计算出净现值NPV1;如果NPV1>0,说明设定的折现率i1小于该项目的内含报酬率,此时应提高折现率为i2,并按i2重新计算该投资项目净现值NPV2;如果NPV1<0,说明设定的折现率i1大于该项目的内含报酬率,此时应降低折现率为i2,并按i2重新将项目计算期的现金流量折算为现值,计算净现值NPV2。   经过上述过程,如果此时NPV2与NPV1的计算结果相反,即出现净现值一正一负的情况,试误过程即告完成,因为零介于正负之间(能够使投资项目净现值等于零时的折现率才是财务内部收益率),此时可以用插值法计算了;但如果此时NPV2与NPV1的计算结果符号相同,即没有出现净现值一正一负的情况,就继续重复进行试误工作,直至出现净现值一正一负。本题目先假定内含报酬率为10%,则:   NPV1=1200×0.9091+1600×0.8264+2400×0.7513-4000=216.8万   因为NPV1大于0,所以提高折现率再试,设I=12%, NPV2=1200×0.8929+1600×0.7972+2400×0.7118-4000=55.32万   仍旧大于0,则提高折现率I=14%再试,NPV3=1200×0.8772 +16000×7695+2400×0.6750-4000=-96.19万   现在NPV2 >0,而 NPV3<0(注意这里要选用离得最近的两组数据),所以按照内插法计算内含报酬率,设i2 =14%,i1=12%,则 β2=-96.19,β1=55.32,β=0根据   (i2-i1)/(i-i1)=( β2-β1)/( β-β1)   有这样的方程式:(14%-12%)/(i-12%)=(-96.19-55.32)/(0-55.329)   解得I=12.73%,
03/04 10:39
下载APP,拍照搜题秒出结果

您有一张限时会员卡待领取

00:10:00

免费领取