如何计算一系列复利现值的和,以得到普通年金现值?
问题已解决
所属话题:
#会计实务#
网校学员 | 提问时间:08/21 21:55
计算一系列复利现值的和,以得到普通年金现值的方法如下:
1. 首先,确定普通年金的期数和每期支付的金额。
2. 然后,计算每期支付的现值。假设每期支付的金额为P,第一期的现值为V1,第二期的现值为V2,以此类推,第n期的现值为Vn。根据复利计算公式,有:
V1 = P / (1 + i)^1
V2 = P / (1 + i)^2
V3 = P / (1 + i)^3
...
Vn = P / (1 + i)^n
其中,i为每期利率,n为普通年金的期数。
3. 最后,将每期支付的现值相加,即为普通年金的现值:
PV = V1 + V2 + V3 + ... + Vn
其中,PV为普通年金的现值。
需要注意的是,以上计算方法是基于复利计算的,因此需要确定每期的利率和期数。如果利率和期数不同,需要分别计算每个期间的现值,然后相加得到普通年金的现值。
1. 首先,确定普通年金的期数和每期支付的金额。
2. 然后,计算每期支付的现值。假设每期支付的金额为P,第一期的现值为V1,第二期的现值为V2,以此类推,第n期的现值为Vn。根据复利计算公式,有:
V1 = P / (1 + i)^1
V2 = P / (1 + i)^2
V3 = P / (1 + i)^3
...
Vn = P / (1 + i)^n
其中,i为每期利率,n为普通年金的期数。
3. 最后,将每期支付的现值相加,即为普通年金的现值:
PV = V1 + V2 + V3 + ... + Vn
其中,PV为普通年金的现值。
需要注意的是,以上计算方法是基于复利计算的,因此需要确定每期的利率和期数。如果利率和期数不同,需要分别计算每个期间的现值,然后相加得到普通年金的现值。
2023-08-21 21:58:26
相关问答
查看更多最新问答
查看更多